

中国社会科学院世界经济与政治研究所

国际投资研究室

Working Paper No.201605 March 24, 2016

赵奇锋

zhaoqifeng1992@163.com

王永中

wangyzcass@163.com

# 出口拉动增长抑或增长推动出口:来自中国的经验证据1

内容摘要: 本文利用中国 252 个地级及以上城市的数据,采用面板向量自回归(PVAR)计量分析模型和面板 Granger 因果关系检验方法,分析了出口、产出、投资和财政支出之间的动态效应及其区域差异,实证检验了"出口拉动增长"假说和"增长推动出口"假说。经验研究发现: (1) 总体上看,中国满足出口拉动增长假说,但不满足增长推动出口假说; (2) 东部地区的出口增长对产出增长的拉动效应要明显强于中西部地区; (3) Granger 检验显示中国的出口增长与产出增长之间呈双向因果关系; (4) 固定资产投资对经济增长的拉动作用明显; (5) 东部地区的政府支出对经济增长的拉动效应强于中西部地区。

关键词: 出口产出投资政府支出面板 VAR 模型

# **Export-led Growth or Growth-led Export: China's Experience**

**Abstract:** Based on the data from 252 cities in China, the paper analyzes the dynamic effects and regional difference among China's export, output, investment and fiscal expenditures, through panel VAR econometric model and panel Granger causality test model, and tests the hypothesis of export-led growth or growth-led export. The conclusions are as follows: first, China generally meets the hypothesis of export-led growth but that of growth-led export; second, the effect of export-led growth in the eastern region is much stronger than that of the mid-western China; third, the export growth and output growth in China have a relationship of reciprocal causation; fourth, fixed asset investment has a strong positive effect on economic growth; finally, the effect of government expenditures on economic growth in eastern China is stronger than that of mid-western China.

**Keywords:** Export; Output; Investment; Government Expenditures; Panel VAR.

<sup>&</sup>lt;sup>1</sup>赵奇锋,中国社会科学院研究生院世界经济系硕士研究生; 王永中,中国社会科学院世界经济与政治研究所国际投资室研究员。

出口与经济增长的关系问题是经济增长领域的一个热点问题。在解释出口与增长关系方面,目前有"出口拉动增长(Export-Led Growth)"假说和"增长推动出口(Growth-Led Export)"假说两种代表性观点。"出口拉动增长"假说认为,出口能够通过市场规模效应和技术扩散外溢效应等途径拉动经济增长。所谓市场规模效应是指出口扩大了国内产品的市场需求,国内投资规模随之增加,进而拉动经济增长,而技术扩散效应指通过出口不仅能引进国外先进的技术,还能促进本国技术水平的提高,从而出口所带来的技术进步会对经济增长产生正向促进作用(Choong et al.,2005; Dash, 2009; Seabra and Galimberti, 2009; Fatma and Burcu Kilinc, 2013)。"增长推动出口"假说则认为经济增长会带来技术水平和经济效率的提升,进而形成相对于其他地区的比较竞争优势,最终推动该地区的产品出口(Krugman, 1984; Dutt and Ghosh, 1996; Irene and Perry, 1996; Reppas and Christopoulos,2005)。虽然这两种理论假说对于出口在经济增长中扮演的是拉动抑或推动作用持对立的观点,但均一致认同出口与经济增长之间存在着相互促进的正向联系。

一些跨国和国别的特征数据能初步佐证出口与经济增长之间的正向联系。图 1 为 102 个国家和地区 1993-2012 年期间人均出口与人均 GDP 的年均增速的散点图 1。从图 1 中可看出,全球范围内的人均出口的年均增速同人均 GDP 的年均增速之间存在着正相关关系。此外,所有那些在 20 世纪 90 年代从发展中经济体光荣毕业并进入发达经济体序列的亚洲国家和地区(日本和亚洲"四小龙"),均遵循的是出口导向型经济发展战略,而在 20 世纪中叶经历了经济增长滑坡的许多拉丁美洲国家都实行了倾向于进口替代的贸易政策,中国和印度在 20 世纪 80、90 年代实现贸易自由化后也都取得了令人印象深刻的经济增长成就(Aghion and Howitt, 2009)。

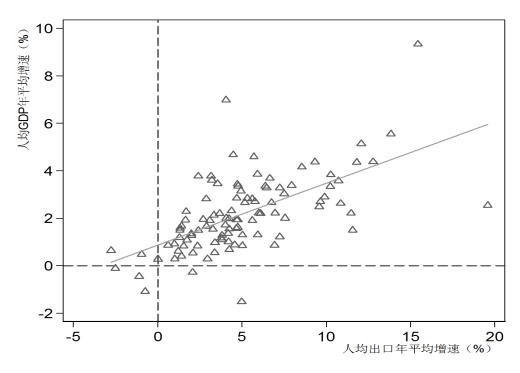



图 1 1993-2012 年人均出口与人均 GDP 的年均增速的散点图

注:数据涵盖全世界 102 个国家和地区。

资料来源:世界银行数据库。

1基于数据质量和数据可得性,我们的样本涵盖了全世界各大洲 102 个国家和地区。考虑到文章篇幅的限制,我们不一一列出。图中斜线为样本拟合线,样本拟合线的斜率反映了相关关系的大小和方向。斜率为正说明存在正相关关系,反之存在负相关关系。下同。

中国的特征数据和经验也初步证明了出口与经济增长之间的正相关关系。自 2001 年正式加入WTO 以来,中国出口导向型经济增长模式取得了巨大成功,进入了对外贸易和经济增长的"黄金十年"。如图 2 所示,2001-2013 年期间,中国外贸出口总额由 2.2 万亿元大幅攀升至 13.7 万亿元,增长了 5.2 倍,年均增速高达 16.7%;中国的国内生产总值由 2001 年的近 11 万亿元上升至 2013 年的 56.9 万亿元,年均增速接近 10%。而且,中国的外贸出口增速在大多数年份里均大幅领先于 GDP 增速,且在一定程度上表现出与 GDP 增速的同周期性。

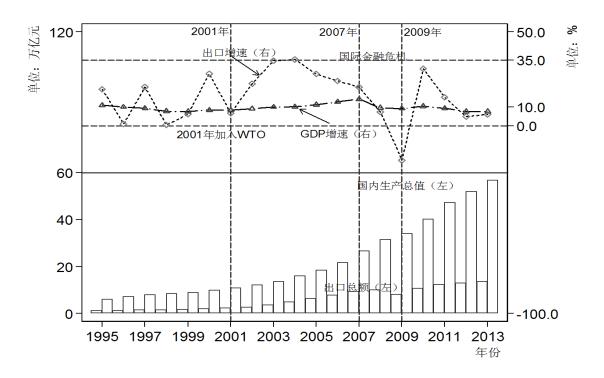



图 2 1995-2013 年中国的 GDP、出口的规模与增速 资料来源:《中国统计年鉴》(历年)和《新中国六十年统计资料汇编》。

现在,我们分析中国各地区的人均出口的年均增速与人均 GDP 的年均增速的相关性。图 3 为中国 252 个地级及以上城市 2005-2012 年人均出口与人均 GDP 的年均增速的散点图¹。从全国范围来看,出口的年均增速与经济产出的年均增速之间存在着正相关关系(样本拟合线斜率为正),但显著性水平较低。分区域看,出口与增长的正相关性在对外贸易更加发达的东部沿海地区表现得更为明显(样本拟合较好且离散情况不严重),而在相对偏僻内向的中西部地区却不显著(样本拟合线斜率方向不确定,且样本点相较东部地区更为发散)。

.

<sup>&</sup>lt;sup>1</sup>根据《2013年中国城市统计年鉴》,截至 2013年底,我国地级及以上城市共有 289 个,包括最新设立的地级三沙市。

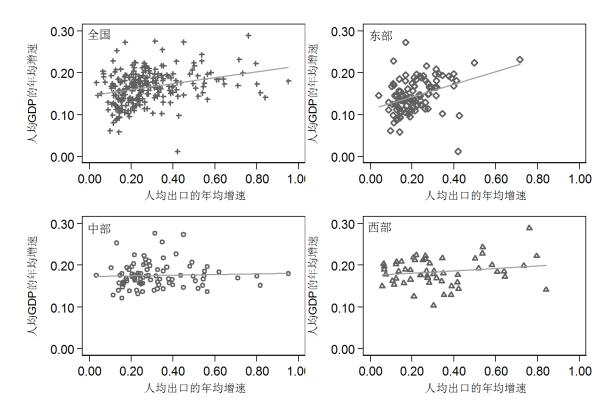



图 3 2005-2012 年中国地级及以上城市的人均出口与人均产出年平均增速散点图 资料来源:《中国城市统计年鉴》、《中国区域统计年鉴》和各地区的统计年鉴(历年)。 注:数据涵盖中国 252 个地级及以上城市,其中东部地区 101 个,中部地区 94 个,西部地区 57 个。

当前,我们感兴趣的问题是,中国的外贸出口与经济增长之间是否存在因果关系!?如果存在因果关系,是否满足出口拉动增长假说抑或增长推动出口假说?为分析中国的出口与经济增长之间的经验关系,本文基于中国 252 个地级及以上城市 2005 至 2012 年的面板数据,采用最新发展的面板 Granger 因果关系检验方法和面板 VAR 计量分析方法,构建了一个包含人均出口增速、人均 GDP 增速、人均全社会固定资产投资增速和人均政府一般预算内支出增速的多变量面板 VAR 模型,检验各系统变量之间的 Granger 因果关系和动态效应。

本文的特色之处在于:一是采用了最新发展的面板 VAR 分析方法。面板 VAR 方法综合传统 VAR 方法与面板数据的优点,能有效捕捉变量间的动态关系,且不需要限定具体的模型和参数,显著减轻了模型设定偏误。二是选择了 2005-2012 年我国 252 个地级及以上城市的面板数据为考察样本,我国不同区域城市的经济发展和对外开放水平差异较大,这为研究出口与增长的经验关系提供了较好的数据样本,而以往的研究多利用全国和省级的数据(Jordan and Fiona, 1998;高峰、范炳全和王金田,2005;张兵兵,2013)。三是为保证研究结果的全面性和稳健性,除进行全样本研究外,我们还对东部、中部和西部三个地区子样本进行分析。

论文随后的结构安排如下:第二部分是文献回顾;第三部分是模型设定与数据处理;第四部分是实证过程与结果分析,包括系统变量相关性分析、面板单位根检验、面板 VAR 模型估计、面板格兰杰因果关系检验、面板 VAR 模型脉冲响应分析和面板 VAR 模型预测误差方差分解;第五部分是研究结论与政策含义。

 $<sup>^1</sup>$ 需要指出的是,本文中的因果关系是指格兰杰因果关系,而非逻辑关系中的因果关系。格兰杰因果关系更多地体现出一种预测关系。如果变量 A 或 A 的滞后值对变量 B 具有预测作用,那么,就可说变量 A 是变量 B 的格兰杰因,反之亦然。下文凡提及因果关系均代指格兰杰因果关系。

### 二 文献回顾

目前,学者们对出口与增长的经验关系问题作了大量研究。归结起来,有四种竞争性的观点: 一是出口扩张拉动经济增长;二是经济增长推动了出口扩张;三是出口与增长之间存在着正反馈的双向互动关系;四是出口与经济增长之间不存在着因果关系或确定性关系。

一些学者基于国别或跨国的经验数据,发现了出口拉动经济增长的证据。基于 43 个发展中国家的数据,Balassa(1985)的经验研究显示,经济增长的跨国差异受出口的影响,低收入国家可通过促进工业制成品的出口来加速本国经济增长。Bahmani-Oskooee and Alse(1993)采用协整和误差修正模型重新检验了欠发达国家的出口与产出间的经验关系,发现出口增长与产出增长之间存在着正反馈的双向因果关系。Thornton(1996)对墨西哥的研究也得到了出口拉动经济增长的证据。

Choong et al.(2005)的研究显示,马来西亚的出口增长与产出增长之间存在 Granger 因果关系,出口增长对产出增长表现出明显的拉动作用。Dash(2009)对印度的研究也得出了类似的结论。他发现,在实施贸易自由化政策后,印度的出口与经济增长之间存在着长期均衡关系,且出口确实是拉动印度经济增长的一个重要原因。Galimberti(2009)基于 72 个国家的面板数据资料,采用面板门限回归方法研究了出口增长与产出增长之间的关系,其研究结论验证了"出口拉动增长"假说。Zeren and Savrul(2013)采用欧洲 15 个主要国家的数据,应用面板协整分析技术,发现出口增长对产出增长具有显著的拉动作用。

还有一些文献发现,出口增长并未显著拉动产出增长,反而是经济增长推动了出口扩张。Henriques and Sadorsky(1996)基于对加拿大的出口增长、GDP增长与贸易增长三个变量之间的Granger 因果关系检验,发现出口增长并非 GDP增长的 Granger 原因,但 GDP增长却是出口增长的 Granger 原因。Reppas and Christopoulos(2005)对亚洲和非洲 22 个欠发达国家的研究也表明,产出增长推动了出口增长而非出口拉动了增长。Hsiao(1987)认为,亚洲"四小龙"的出口增长与产出增长之间不存在显著的因果关系,其经济快速增长主要得益于国内产业发展和进口替代,而非出口促进。

另有一些学者认为,出口与经济增长之间不是一种单纯的单向关系,更可能是一种存在反馈作用的双向互动关系。Ray(2011)发现,印度的出口增长与产出增长之间互为双向因果关系,出口增长能够拉动产出增长,产出增长反过来又推动出口增长。Waithe et al.(2011)对墨西哥的经验研究得到了与 Ray(2011)相似的结论。他们的研究显示,出口增长在短期会拉动经济增长,而经济增长在长期内反过来会推动出口增长。除了单个国家之外,一些跨国研究也佐证了出口增长与产出增长的双向互动关系的存在。Jun(2007)利用 81 个国家的数据,运用面板协整分析技术,发现出口增长与产出增长与产出增长之间的关系同时满足"出口拉动增长"假说和"增长推动出口"假说。而且,他的研究还显示出口增长对产出增长的拉动效应与产出增长对出口增长的推动效应是不对等的,后者明显强于前者。

一些学者采用新的计量分析方法分析出口与增长之间的双向因果关系。Hatemi-J(2002)采用自助模拟技术检验了日本 1960-1999 年期间的出口增长与产出增长的因果关系,发现二者存在双向Granger 因果关系。Awokuse(2006)应用新发展的有向无环图(directed acyclic graphs, DAG)和时间序列向量自回归模型(VAR),对日本的出口增长与产出增长进行了分析,发现两者存在双向因果关系。Awokuse and Christopoulos(2009)进一步分析了出口增长与产出增长之间的非线性Granger 因果关系。他们采用平滑转换自回归模型(STAR)对五个工业化国家的研究结果显示,出口增长与产出增长之间存在非线性因果关系。

另外,一些学者的研究发现,出口扩张与经济增长间可能不存在因果关系,或者说它们之间的关系是不确定的。Hatemi-J and Irandoust(2000)采用时间序列 VAR 模型研究了希腊、爱尔兰、墨西哥、葡萄牙、土耳其五国的出口扩张与经济增长间的关系。他们发现,爱尔兰和墨西哥存在着由出口到增长的单向 Granger 因果关系;葡萄牙的增长是出口的单向 Granger 原因;希腊和土耳其的出口与经济增长之间不存在因果关系。Konya(2006)利用 24 个 OECD 国家的面板数据,采用了基于似不相关回归和瓦尔德检验的面板数据方法,研究了出口与 GDP 之间的因果关系,得出如下结论:比利时、丹麦、冰岛、爱尔兰、新西兰、西班牙和瑞典满足出口拉动增长假说;相反,奥地利、法国、希腊、日本、墨西哥、挪威和葡萄牙则支持增长推动出口假说;加拿大、芬兰、荷兰

的出口与 GDP 之间存在双向因果关系;澳大利亚、韩国、卢森堡、瑞士、英国和美国的出口与 GDP 之间不存在因果关系。Shan and Sun(1998a)构建一个五变量 VAR 模型来分析澳大利亚的出口 与制造业产出之间的动态关系,没有发现出口拉动增长的证据。Chang et al.(2013)运用面板因果分析方法,检验了南非 9 个省的经验数据,其研究结果显示出口与经济增长之间不存在因果关系。

学者对中国的出口与经济增长之间的关系予以高度关注。Shan and Sun(1998b)运用 VAR 和Granger 因果关系检验方法,发现中国的出口与制造业产出增长之间存在双向因果关系,且出口对于制造业增长有显著的拉动效应。林毅夫和李永军(2003)认为,出口不仅能直接拉动经济增长,还能通过消费、投资、政府支出以及进口对经济增长产生间接拉动作用。他们的估计结果显示,中国外贸出口每增长十个百分点,平均能拉动 GDP 增长一个百分点。高峰等(2005)进一步研究了长期和短期的出口与增长的相互影响,发现出口无论是在长期还是在短期均对经济增长具有拉动作用。张兵兵(2013)运用 CF 滤波分析、PEARSON 相关检验和偏相关分析方法,构建了一个关于中国 GDP 增长的 Logistic 回归模型,分别研究了出口、进口、进出口及净出口的增长与中国 GDP 增长的关系,发现只有出口是促进中国经济增长的正向因素。以上研究仅能从总体上说明中国满足出口拉动增长假说,考虑到中国内部不同区域间的巨大差异性,有必要开展分区域研究。雷欣和陈继勇(2012)运用滞后增广向量自回归模型和 Bootstrap 的异质面板格兰杰因果检验方法,对中国省际面板数据的研究发现,出口与经济增长总体上互为因果关系,但在不同省区之间具有异质性。

## 三 模型设定与数据处理

### (一) 面板 VAR 模型及变量选取

本文采用的是最新发展的面板 VAR 计量分析方法。传统时间序列 VAR 方法将系统中所有变量均视作内生变量处理,可以用来考察变量之间的动态效应。面板数据模型则允许异质性个体效应存在,相较时间序列和横截面数据,面板数据所包含的总体信息更加丰富,从而提高了模型估计的有效性和稳健性。面板 VAR 方法综合了传统 VAR 方法与面板数据模型的优点,能更有效的捕捉系统变量间的动态效应。

一个简单的一阶滞后面板 VAR 模型的设定如下:

$$Z_{i,t} = \Gamma_0 + \Gamma_1 Z_{i,t-1} + f_i + d_t + e_{i,t}$$
 \\* MERGEFORMAT (1)

其中,i 表示截面变量,t 表示时间变量, $\mathbf{Z}_{i,t}$  为包含所有系统变量的列向量, $\mathbf{Z}_{i,t-1}$  为包含所有系统变量一阶滞后项的列向量, $\mathbf{f}_i$  表示截面个体固定效应, $\mathbf{d}_t$  表示时间趋势固定效应, $\mathbf{e}_{i,t}$  为服从独立同分布的一般随机残差项。

面板 VAR 系统中包含的变量个数越多,需要考虑的模型参数也越多,待估参数过多将导致样本容量过小,从而增大估计偏差,降低预测精度,因此,VAR 模型包含的变量数量通常较少。但是,如果 VAR 模型太小,则可能存在较大的遗漏变量偏误,故而主要根据经济理论来确定 VAR 系统应包含的变量(陈强, 2010)。

本文从需求的角度,构建了一个包含投资、出口、政府支出和经济增长的面板 VAR 模型,来研究出口与增长之间的动态效应。沿袭通常的做法,我们选取人均 GDP 增速(简记为  $g_y$ )作为经济增长的代理变量,选取人均全社会固定资产投资增速(简记为  $g_f$ )作为投资增长的代理变量,选取人均出口增速(简记为  $g_e$ )作为出口增长的代理变量,选取人均政府一般预算内支出增速(简记为  $g_g$ )作为政府支出增长的代理变量。

#### (二)相关变量数据来源、处理过程及描述性统计

基于数据可得性及样本容量等方面的综合考虑,我们选取中国252个地级及以上城市为样本,东部地区101个,中部地区94个,西部地区57个。时间跨度为2005-2012年。鉴于中国不同区域

间经济社会发展和对外开放水平的巨大差异性,基于全面和稳健的考虑,我们遵循以往文献的做法,将各个城市按其所在省(区、市)划分为东部、中部和西部三个区域子样本<sup>1</sup>,以便进行区域间的比较分析。

各个城市的 GDP、人均 GDP、人口数<sup>2</sup>、地方财政一般预算内支出和全社会固定资产投资(不含农户)数据均来源于历年《中国城市统计年鉴》。货物出口总额(按经营单位所在地分)数据来源于《中国区域经济统计年鉴》<sup>3</sup>。

原始数据经初步处理后得到我们所需的人均 GDP 增速(g\_y)、人均出口增速(g\_e)、人均全社会固定资产投资增速(g\_f)和人均政府财政支出增速(g\_g)变量。随后对上述变量进行缺漏值和异常值处理<sup>4</sup>,并剔除相关扰动。表 1 列示了变量的描述性统计量,包括全样本及区域子样本(东部、中部、西部)的观察值、平均值、标准差、最小值、25%分位数、中位数、75%分位数和最大值。由表 1 知,系统变量标准差的取值相对较小,反映出样本数据的离群情况不严重,在可接受范围之内,不会对研究结果产生比较明显的干扰。

| 表1          | 系统变量的部分描述性统计量        |   |
|-------------|----------------------|---|
| <del></del> | <b>多级安康的歌分描述性级计量</b> | - |
|             |                      |   |

|                |       | <u>`</u> |       | CTT H 4 H 1: 24 |        |        |       |       |       |
|----------------|-------|----------|-------|-----------------|--------|--------|-------|-------|-------|
|                | 变量    | 观察       | 平均    | 标准              | 最小     | 25%分位  | 中位    | 75%分位 | 最大    |
|                | 名     | 值        | 值     | 差               | 值      | 数      | 数     | 数     | 值     |
|                | g_y   | 2016     | 0.166 | 0.089           | -0.106 | 0.118  | 0.165 | 0.217 | 0.416 |
| ∧ E            | g_e   | 2016     | 0.255 | 0.418           | -0.939 | 0.037  | 0.232 | 0.416 | 1.572 |
| 全国             | g_f   | 2016     | 0.265 | 0.164           | -0.186 | 0.167  | 0.260 | 0.355 | 0.791 |
|                | $g_g$ | 2016     | 0.247 | 0.109           | -0.064 | 0.181  | 0.241 | 0.302 | 0.658 |
|                | g_y   | 808      | 0.146 | 0.086           | -0.106 | 0.103  | 0.152 | 0.192 | 0.416 |
| <b>→</b> ÷p    | g_e   | 808      | 0.205 | 0.283           | -0.939 | 0.077  | 0.210 | 0.332 | 1.572 |
| 东部             | g_f   | 808      | 0.222 | 0.148           | -0.186 | 0.136  | 0.216 | 0.312 | 0.791 |
|                | $g_g$ | 808      | 0.226 | 0.093           | -0.064 | 0.170  | 0.219 | 0.275 | 0.658 |
|                | g_y   | 752      | 0.175 | 0.087           | -0.106 | 0.125  | 0.174 | 0.228 | 0.416 |
| <b>.</b> → →17 | g_e   | 752      | 0.300 | 0.458           | -0.919 | 0.036  | 0.267 | 0.529 | 1.572 |
| 中部             | g_f   | 752      | 0.294 | 0.164           | -0.186 | 0.203  | 0.298 | 0.386 | 0.791 |
|                | $g_g$ | 752      | 0.262 | 0.111           | -0.064 | 0.195  | 0.256 | 0.311 | 0.658 |
|                | g_y   | 456      | 0.184 | 0.090           | -0.106 | 0.129  | 0.180 | 0.239 | 0.416 |
|                | g_e   | 456      | 0.267 | 0.528           | -0.931 | -0.072 | 0.214 | 0.505 | 1.572 |
| 西部             | g_f   | 456      | 0.292 | 0.175           | -0.186 | 0.192  | 0.286 | 0.392 | 0.791 |
|                | $g_g$ | 456      | 0.258 | 0.123           | -0.064 | 0.183  | 0.247 | 0.323 | 0.658 |

注:  $g_y$  为人均 GDP 增速, $g_e$  为人均出口增速, $g_f$  为人均全社会固定资产投资增速, $g_g$  为人均政府财政支出增速。

# 四 实证过程与结果分析

本文的实证分析过程全部采用 STATA12 计量分析软件进行。具体如下:

<sup>&</sup>lt;sup>1</sup>东部地区包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、海南 11 个省(市);中部地区包括山西、吉林、黑龙江、安徽、江西、河南、湖北、湖南 8 个省;西部地区包括内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆 12 个省(市、自治区)。

<sup>22008</sup>年及以前人口数为年末总人口,2008年以后人口数为年平均人口。

<sup>3</sup> 我们通过查阅其它相关资料补充了部分缺失及遗漏数据。这些资料包括各地区统计年鉴及政府工作报告。

<sup>4</sup>异常值的处理方法包括截尾处理和缩尾处理,其中缩尾处理由于不改变观察值数目而被广泛采用。本文遵循 以往文献中的做法,对变量采用缩尾处理。

#### (一) 系统变量相关性分析

在进行正式实证研究之前,有必要对系统变量之间的相关性作简要分析。这实际上是对本文的实证模型设定进行的初步检验。表 2 报告了出口增长(g\_e)、产出增长(g\_y)、固定资产投资增长(g\_f)、政府支出增长(g\_g)四个系统变量的相关性。总体来看,以上四个系统变量间的相关性较为显著,初步验证了本文面板 VAR 模型设定具有一定的合理性1。

| 表 2   | 系统变量的相关性情况           |
|-------|----------------------|
| 12. 4 | <b>邓</b> 凯又里的"旧人"庄明见 |

| ** *********************************** |        |        |        |       |  |  |  |
|----------------------------------------|--------|--------|--------|-------|--|--|--|
|                                        | g_y    | g_e    | g_f    |       |  |  |  |
| g_y                                    | 1.000  |        |        |       |  |  |  |
| g_e                                    | 0.165* | 1.000  |        |       |  |  |  |
| g_f                                    | 0.140* | -0.037 | 1.000  |       |  |  |  |
| g_g                                    | 0.202* | 0.085* | 0.204* | 1.000 |  |  |  |

注: \*表示在 5%的水平上显著。

#### (二) 系统变量面板单位根检验

面板 VAR 模型要求所有系统变量必须为平稳过程,因此,在进行面板 VAR 模型估计与分析之前,需要对变量进行单位根检验。如果样本容量较小,对单个变量进行单位根检验的功效可能很弱,即如果接受"存在单位根"的原假设,犯第二类错误的概率很大,此时,如果有面板数据,可以找到更为有效的检验方法(陈强,2010)。本文采用面板单位根检验方法,既能克服传统时间序列单位根检验中存在的小样本偏误,又能在一定程度上控制不可观测的个体效应和截面相关性的干扰。

文献中已经存在一系列的面板单位根检验方法,包括 LLC 检验、HT 检验、Breitung 检验、IPS 检验、Fisher 检验和 Hadri LM 检验²。这些检验方法各有利弊。为保证检验结果的稳健性,我们分别对人均产出增速变量( $g_y$ )、人均出口增速变量( $g_e$ )、人均全社会固定资产投资增速变量( $g_f$ )和人均政府支出增速变量( $g_g$ )进行以上所有六类面板单位根检验,并对检验结果进行全面、综合分析。面板单位根检验模型分别采用固定效应、固定效应加线性时间趋势项两种设定方法。

表 3 列示了系统变量面板单位根检验的具体结果。对于增长变量  $g_y$ 、出口变量  $g_e$  和政府支出变量  $g_g$  而言,所有六种面板单位根检验均显著拒绝单位根的原假设,说明增长、出口和政府支出变量均为平稳过程,且检验结果稳健。对于投资变量  $g_f$  来说,除 Hadri LM 检验外的其它五种面板单位根检验结果均显著拒绝原假设,显示投资变量总体上看也是平稳的。Hadri LM 检验的原假设为所有截面序列均平稳,假设比较强。总体上看,人均产出增速( $g_y$ )、人均出口增速( $g_e$ )、人均固定资产投资增速( $g_f$ )和人均政府支出增速( $g_g$ )变量均平稳,满足面板 VAR 模型估计的要求。

表 3 系统变量所有六种面板单位根检验结果

|       | 区(田)几(110) | ## ## 17.17 | 检验变量    |         |         |         |
|-------|------------|-------------|---------|---------|---------|---------|
| 型     | 原假设(H0)    | 模型设定 -      | g_y     | g_e     | g_f     | g_g     |
|       |            | 个体固定效       | -51.553 | -33.207 | -25.158 | -30.031 |
| - 110 |            | 应           | (0.000) | (0.000) | (0.000) | (0.000) |

<sup>1</sup> 如果 VAR 模型包含不相关的变量,则会增大估计量方差,降低模型的预测能力。

<sup>&</sup>lt;sup>2</sup> LLC 检验由 Levin, Lin and Chu(2002)提出; HT 检验由 Harris and Tzavalis(1999)提出; Breitung 检验由 Breitung(2000)提出; IPS 检验由 Im, Pesaran and Shin(2003)提出; Fisher 检验由 Choi(2001)提出; Hadri LM 检验由 Hadri(2000)提出。

|                |                             | 个体固定效<br>应+线性时        | -79.482<br>(0.000) | -46.979<br>(0.000) | -41.418<br>(0.000) | -49.155<br>(0.000) |
|----------------|-----------------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|
| TH             | 面板包含单位根过                    | 个体固定效                 | -36.459            | -42.133            | -24.785            | -41.793            |
| 检验             | 程                           | 个体固定效                 | -19.210            | -22.559            | -12.588            | -21.254            |
|                |                             | 应+线性时<br>间趋势          | (0.000)            | (0.000)            | (0.000)            | (0.000)            |
| D.,            |                             | 个体固定效<br>应            | -11.925<br>(0.000) | -17.705<br>(0.000) | -12.108<br>(0.000) | -16.428<br>(0.000) |
| Breitung<br>检验 | 面板包含单位根过<br>程               | 个体固定效<br>应+线性时<br>间趋势 | -4.487<br>(0.000)  | -14.143<br>(0.000) | -6.276<br>(0.000)  | -7.828<br>(0.000)  |
| IPS            | 所有截面序列均为<br>单位根过程           | 个体固定效<br>应            | -15.187<br>(0.000) | -14.644<br>(0.000) | -8.836<br>(0.000)  | -13.720<br>(0.000) |
| 检验             |                             | 个体固定效<br>应+线性时<br>间趋势 | -13.258<br>(0.000) | -15.895<br>(0.000) | -11.921<br>(0.000) | -13.753<br>(0.000) |
| Ei-lan         | <b>ヴナ</b> かっこ <b>ウェ</b> リケソ | 个体固定效<br>应            | -37.640<br>(0.000) | -32.396<br>(0.000) | -14.939<br>(0.000) | -31.332<br>(0.000) |
| Fisher<br>检验   | 所有截面序列均为<br>单位根过程           | 个体固定效<br>应+线性时<br>间趋势 | -30.923<br>(0.000) | -29.630<br>(0.000) | -12.398<br>(0.000) | -27.223<br>(0.000) |
| Hadri          | 所有截面序列均为                    | 个体固定效<br>应            | 2.472<br>(0.007)   | -2.808<br>(0.998)  | 8.001<br>(0.000)   | -3.323<br>(1.000)  |
| LM<br>检验       | 平稳过程<br>(注意与其它单位<br>根检验的区别) | 个体固定效<br>应+线性时<br>间趋势 | -1.012<br>(0.844)  | -4.392<br>(1.000)  | 3.670<br>(0.000)   | -1.333<br>(0.909)  |

注: 图中所示为面板单位根检验的统计值(调整 t 统计量或调整 z 统计量),括号内为相应的 P 值。

### (三)系统变量面板 VAR 模型估计

估计面板 VAR 模型的第一步是确立滞后阶数。我们根据信息准则来选择面板 VAR 模型的最佳滞后阶数。由表 4 可知, AIC、BIC 和 HQIC 等信息准则所选取的模型最佳滞后阶数均为滞后一阶。因此,本面板 VAR 模型被设定为一阶滞后。

| ———<br>滞后期 | AIC     | BIC    | HQIC    |
|------------|---------|--------|---------|
| 1          | -2.151* | 1.453* | -0.809* |
| 2          | -1.822  | 2.420  | -0.228  |
| 3          | -1.478  | 3.672  | 0.478   |

注:\*号表示由相应信息准则所选取的最佳滞后阶数。

由于我国不同区域间发展差异比较大,有必要分别就全样本和东、中、西部地区子样本进行面板 VAR 模型的估计和分析。表 5 报告了一阶滞后面板 VAR 模型的具体估计结果。由表可知,从全国范围来看,在产出增长为因变量的回归方程中,出口增长的一阶滞后项的系数为 0.014,且在95%的显著性水平上显著,初步表明出口增长对产出增长具有促进作用。在出口增长为因变量的回归方程中,产出增长的一阶滞后项的估计系数为-0.068,说明经济增长对出口增长具有反向抑制作用,但该系数在统计意义上是不显著的。

需要指出的是,面板 VAR 模型由于包含的参数太多以至于无法解释其经济含义,因此,在实证研究中常常并不太关心模型的回归系数,需要重点关注的是变量格兰杰因果关系检验、模型脉冲响应分析和预测误差方差分解。

|                | 表 5                   | 一阶滯后面板 VAR | 模型估计结果    |             |          |
|----------------|-----------------------|------------|-----------|-------------|----------|
| 1 <del>1</del> | 口亦具                   |            | 自变量       | <u>.</u>    |          |
| 样本             | 因变量 一                 | g_y(t-1)   | g_e(t-1)  | g_f(t-1)    | g_g(t-1) |
|                | ~ v(t)                | 0.148***   | 0.014***  | 0.130***    | 0.131*** |
|                | $g_y(t)$              | (5.371)    | (2.829)   | (8.779)     | (5.416)  |
|                | ~ a(t)                | -0.068     | -0.044    | 0.175**     | 0.280**  |
|                | g_e(t)                | (-0.440)   | (-1.351)  | (2.009)     | (2.135)  |
| 人日共田           | - C(4)                | 0.122**    | 0.001     | 0.384***    | 0.350*** |
| 全国范围           | $g_f(t)$              | (2.264)    | (0.136)   | (11.772)    | (6.690)  |
|                | (4)                   | 0.309***   | 0.036***  | 0.198***    | 0.139*** |
|                | g_g(t)                | (7.807)    | (4.430)   | (7.744)     | (3.668)  |
|                | N 1512                | AIC -2.151 | BIC 1.452 | HQIC -0.809 |          |
|                | (1)                   | 0.148***   | 0.007     | 0.156***    | 0.294*** |
|                | $g_y(t)$              | (3.019)    | (0.533)   | (6.567)     | (6.220)  |
|                | (1)                   | 0.056      | -0.063    | 0.331***    | 0.578*** |
|                | $g_e(t)$              | (0.333)    | (-1.202)  | (2.846)     | (3.600)  |
| 东部地区           | C(1)                  | 0.132      | -0.046**  | 0.291***    | 0.253*** |
|                | $g_f(t)$              | (1.531)    | (-2.504)  | (5.425)     | (3.003)  |
|                | (A)                   | 0.237***   | 0.007     | 0.177***    | 0.141**  |
|                | $g_g(t)$              | (4.593)    | (0.414)   | (5.030)     | (2.505)  |
|                | N 606                 | AIC -1.770 | BIC 5.677 | HQIC 1.128  |          |
|                | (t)                   | 0.124***   | 0.014*    | 0.117***    | 0.104*** |
|                | $g_y(t)$              | (3.310)    | (1.859)   | (5.558)     | (3.116)  |
|                | (4)                   | -0.427*    | -0.047    | 0.207       | 0.115    |
|                | g_e(t)                | (-1.807)   | (-0.904)  | (1.553)     | (0.595)  |
| 中部地区           | ~ f(t)                | 0.176**    | 0.006     | 0.463***    | 0.367*** |
|                | $g_f(t)$              | (2.090)    | (0.363)   | (9.939)     | (4.705)  |
|                | ~ ~(t)                | 0.333***   | 0.029**   | 0.168***    | 0.088    |
|                | $g_g(t)$              | (5.326)    | (2.303)   | (4.426)     | (1.459)  |
|                | N 564                 | AIC 0.484  | BIC 8.355 | HQIC 3.556  |          |
|                | $\alpha \cdot y(t)$   | 0.184***   | 0.013*    | 0.143***    | 0.013    |
|                | $g_y(t)$              | (2.713)    | (1.739)   | (3.848)     | (0.287)  |
|                | $\sigma_{-\alpha}(t)$ | 0.280      | -0.040    | -0.016      | 0.201    |
| 西部地区           | g_e(t)                | (0.637)    | (-0.712)  | (-0.071)    | (0.634)  |
|                | g f(4)                | 0.053      | 0.020     | 0.324***    | 0.444*** |
|                | $g_f(t)$              | (0.440)    | (1.331)   | (4.141)     | (4.003)  |
|                | g g(t)                | 0.439***   | 0.063***  | 0.290***    | 0.250*** |

| <br>- |     | (4.047 | 7)    | (4  | .583)  | (4.1 | 26)   | (2.887) |
|-------|-----|--------|-------|-----|--------|------|-------|---------|
| N     | 342 | AIC    | 3.642 | BIC | 15.124 | HQIC | 8.216 |         |

注: 括号内为 t 统计量,\*表示在 10%显著性水平上显著,\*\*表示在 5%水平上显著,\*\*\*表示在 1%水平上显著。

### (四)系统变量面板 Granger 因果关系检验

为确定系统变量之间的因果关系,需对变量进行面板 Granger 因果关系检验。Granger(1969)提出的 Granger 因果关系检验方法基于以下思想:如果变量 x 是变量 y 的 Granger 因,但 y 不是 x 的 Granger 因,则 x 的过去值可以帮助预测 y 的未来值,但 y 的过去值却不能帮助预测 x 的未来值。

考虑如下面板 Granger 因果检验模型:

$$y_{i,t} = \gamma + \sum_{m=1}^{p} \alpha_m y_{i,t-m} + \sum_{m=1}^{p} \beta_m x_{i,t-m} + u_i + \varepsilon_{i,t}$$
 \\* MERGEFORMAT (2)

其中,i 为截面变量,i=1,……,n; t 为时间变量,t=1,……,T; u<sub>i</sub> 为截面 i 的个体效应; $\epsilon_{i,t}$  为一般意义上的随机误差项。检验的原假设为"H<sub>0</sub>:  $\beta_1$ =……= $\beta_p$ =0",原假设的含义即为 x 的过去值对预测 y 的未来值没有帮助,如果面板 Granger 因果关系检验结果显著拒绝原假设,就可以说变量 x 是变量 y 的 Granger 因,变换模型中变量 x 与 y 的位置即可检验变量 y 是否为变量 x 的 Granger 因¹。需要注意的是,两个变量间的 Granger 因果关系也可能由第三个变量引起。

我们现对全国总样本和区域子样本进行面板 Granger 因果关系检验。为保证检验结果的稳健性和可信性,Granger 因果关系模型应当设定一个相对较长的滞后期数。考虑到数据集的时间范围,我们设定面板 Granger 因果关系检验模型的滞后期数为五期。我们得到了同陈继勇(2012)相似的结论,即中国的出口增长与产出增长间的因果关系存在区域异质性。就全国范围而言,面板Granger 因果关系检验均拒绝原假设,说明出口增长与产出增长在全国范围内互为双向因果关系。分地区来看,东部和中部的出口增长与产出增长均满足双向因果关系,但两者在西部地区不存在Granger 因果关系(见表 6)。

表 6 面板 Granger 因果关系检验结果

|                        | 全国      | 东部      | 中部      | 西部      |
|------------------------|---------|---------|---------|---------|
| 原假设                    | 范围      | 地区      | 地区      | 地区      |
|                        | 18.703  | 30.044  | 18.753  | 5.273   |
| 出口增长不是产出增长的 Granger 原因 | (0.002) | (0.000) | (0.002) | (0.383) |
|                        | 18.727  | 24.92   | 11.186  | 7.526   |
| 产出增长不是出口增长的 Granger 原因 | (0.002) | (0.000) | (0.048) | (0.184) |

注:滞后期数设定为5期,括号内为P值,P值越小结果越显著。

#### (五)面板 VAR 模型脉冲响应分析

正交化脉冲响应函数描述了面板 VAR 模型系统中某一变量所受冲击对该变量本身及系统中其他变量的动态影响。脉冲响应函数依赖于变量次序,如改变变量次序,则有可能得到不同的结果,故在实证研究中常结合变量间的 Granger 因果关系及变量外生性强弱来确定变量次序,外生性较强的变量排在前面。由于出口主要由海外需求来决定,受外部市场经济环境的影响较大,其外生性在所有系统变量中是最强的,出口增长带来企业投资增长,投资增长进而促进了经济增长,经济

<sup>1</sup>需要指出的是,格兰杰因果关系并非逻辑意义上的因果关系,充其量只是一种动态相关关系,只是证明了一个变量对另一个变量是否具有预测能力。

增长使得政府财政收入增加,政府支出又依赖于财政收入。综上所述,面板 VAR 模型脉冲响应函数的变量次序应为:人均出口增速变量( $g_e$ ) ⇒人均全社会固定资产投资增速变量( $g_f$ ) ⇒人均产出增速变量( $g_y$ ) ⇒人均政府支出增速变量( $g_g$ )。

图 4 报告了出口增长受到一个标准差的正向冲击时对于产出增长、固定资产投资增长和政府支出增长的动态影响。第一行的四个小图从左到右分别列示了全国及东、中、西部地区的出口对于经济增长的动态效应。从全国范围来看,出口增长对于产出增长具有显著的拉动作用。分地区来看,东、中、西部的出口增长对于产出增长的拉动作用均较为显著,其中,东部地区的拉动作用要明显强于中部和西部地区。随着时间的推移,出口增长对产出增长的拉动效应逐渐减弱,冲击效应基本维持五年的时间。第二行和第三行分别显示了出口增长对于固定资产投资增长与政府支出增长的动态影响。总体上看,出口增长对于投资增长的动态效应并不显著。分地区来看,只有西部地区出口增长对固定资产投资增长具有显著的拉动效应,东部、中部地区均不显著。此外,出口增长对于政府支出增长具有显著的拉动效应,其在西部地区要明显强于东部和中部地区。

图 5 显示了产出增长对出口增长、固定资产投资增长和政府支出增长的动态效应。我们比较关注的是当产出增长受到一个单位标准差正向冲击时对出口增长的影响。第一行分别列示全国及各地区的产出增长对出口增长的动态效应。无论从全国范围还是分地区来看,产出增长对于出口增长的动态效应均不显著,但产出增长对于固定资产投资增长在全国和地区范围均具有显著的反向推动作用,且该效应在西部地区最强,东部地区最弱。此外,产出增长对于政府支出增长具有较为明显的的推动作用,且西部地区要强于东部、中部地区。

综上所述,我们可以得到如下结论: (1)总体来看,中国满足"出口拉动增长"假说,但不满足"增长推动出口"假说; (2)分区域来看,对外开放程度较高的东部地区的出口增长对经济增长的拉动作用要明显强于中西部地区; (3)出口增长对固定资产投资增长的拉动作用仅在西部地区显著,在其他地区不显著; (4)出口增长对政府支出增长具有较明显的拉动作用,且西部地区要强于东部、中部地区; (5)产出增长对出口增长的反向推动作用在全国、地区范围内均不明显; (6)产出增长对固定资产投资增长和政府支出增长均具有较为显著的反向推动效应,其在西部地区要强于东部、中部地区。

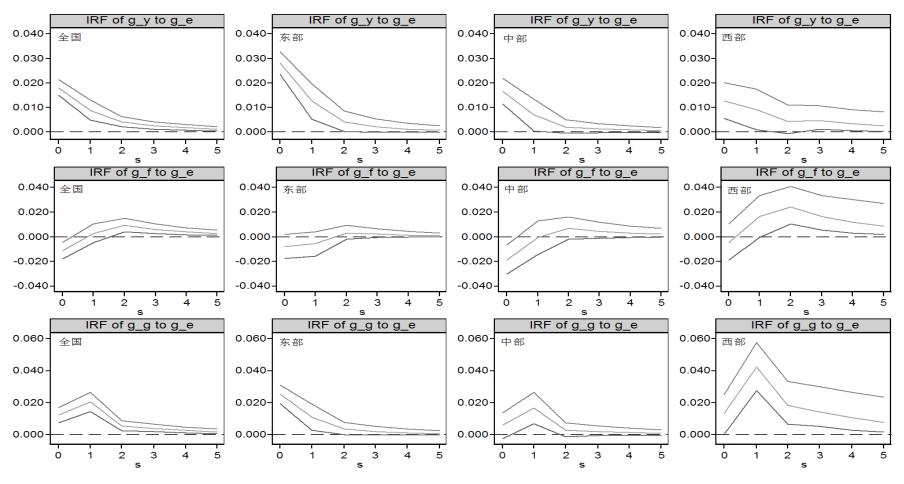



图 4 g\_e 对 g\_y、g\_f、g\_g 的冲击响应图

注: 脉冲响应函数图经过 1000 次蒙特卡洛模拟生成,保证了稳健性,滞后期数为五期(即滞后五年),上下两条线分别表示 95%置信区间区间的上下边界。

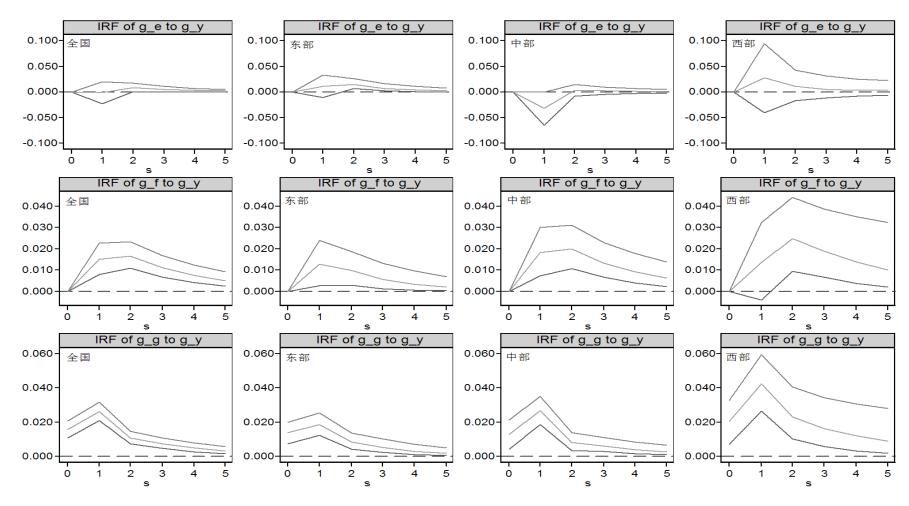



图 5 g\_y 对 g\_e、g\_f 和 g\_g 的冲击响应图

注:脉冲响应函数图经过1000次蒙特卡洛模拟生成,保证了稳健性,滞后期数为五期,上下两条线分别表示95%置信区间的上下边界。

## (六) 面板 VAR 模型的预测误差方差分解

VAR 模型的用途之一是预测,度量各方程的扰动项对预测误差的单独贡献。方差分解能够获得系统变量之间的净效应,是脉冲响应之外度量变量间动态效应的又一方法。现在,我们对所估计的一阶滞后面板 VAR 模型进行五年期的预测误差方差分解。

我们关注的问题是出口增长、固定资产投资增长及政府支出增长对产出增长的解释力。表7显示了对人均产出增速(g\_y)变量进行五年期的预测误差方差分解结果。在第一年时,人均产出增速的预测误差几乎全部来自自身,在第五年时,仍有77.3%的预测方差来自于其本身。这说明,人均产出增速主要受自身因素的影响。在其他影响因素中,投资的影响最大,达到12.8%,出口次之,有5.3%,政府支出的影响最小,只有4.6%。在不同地区,出口增长对产出增长的效应存在着明显的差别。东部地区的出口对于增长变量预测方差的贡献达13.6%(第一年)和11.3%(第五年),远高于中西部地区及全国平均水平。同样,东部地区的固定资产投资和政府支出对增长的影响也高于中西部地区。

预测误差方差分解结果表明: (1)与面板 VAR 模型脉冲响应分析结果类似,东部地区的出口增长对产出增长的拉动作用明显强于中西部地区,进一步验证了"出口拉动增长"假说。(2)投资增长对产出增长的拉动效应较为明显和稳健(稳定在10%至20%之间),且在不同区域差别不大,表明中国经济增长主要依靠投资驱动。(3)政府支出增长对产出增长的拉动效应在东部地区比较明显,在中西部地区则较弱,原因可能是东部地区在财政实力和政府投资效率方面要优于中西部地区。

表7 增长变量 g\_y 五年期的预测误差方差分解

|       | <b>玄星 20月 井口 木木</b> |       | 样本    | 范围    |       |
|-------|---------------------|-------|-------|-------|-------|
|       | 预测期数                | 全国    | 东部    | 中部    | 西部    |
|       | 1                   | 0.052 | 0.136 | 0.045 | 0.022 |
|       | 2                   | 0.055 | 0.125 | 0.047 | 0.030 |
| g_e   | 3                   | 0.054 | 0.117 | 0.045 | 0.031 |
|       | 4                   | 0.054 | 0.114 | 0.044 | 0.033 |
|       | 5                   | 0.053 | 0.113 | 0.044 | 0.034 |
|       | 1                   | 0.000 | 0.011 | 0.000 | 0.009 |
|       | 2                   | 0.074 | 0.107 | 0.068 | 0.067 |
| g_f   | 3                   | 0.108 | 0.148 | 0.101 | 0.088 |
|       | 4                   | 0.122 | 0.162 | 0.116 | 0.097 |
|       | 5                   | 0.128 | 0.166 | 0.122 | 0.102 |
|       | 1                   | 0.000 | 0.000 | 0.000 | 0.000 |
|       | 2                   | 0.029 | 0.088 | 0.022 | 0.000 |
| $g_g$ | 3                   | 0.040 | 0.097 | 0.029 | 0.012 |
|       | 4                   | 0.044 | 0.100 | 0.033 | 0.018 |
|       | 5                   | 0.046 | 0.101 | 0.034 | 0.021 |
|       | 1                   | 0.948 | 0.853 | 0.955 | 0.969 |
|       | 2                   | 0.842 | 0.680 | 0.863 | 0.903 |
| g_y   | 3                   | 0.799 | 0.639 | 0.825 | 0.870 |
|       | 4                   | 0.781 | 0.624 | 0.808 | 0.853 |
|       | 5                   | 0.773 | 0.620 | 0.800 | 0.844 |

注: 面板 VAR 模型预测误差方差经过了 1000 次蒙特卡洛模拟。

## 五 结论与政策含义

为验证"出口拉动增长"和"增长推动出口"假说,本文基于中国 252 个地级及以上城市 2005-2013 年的面板数据,采用最新发展的面板向量自回归计量分析方法,构建了一个包含增长(人均产出增速)、出口(人均出口增速)、投资(人均全社会固定资产投资增速)和政府支出(人均财政一般预算内支出增速)的多变量面板 VAR 模型,运用 Granger 因果检验、脉冲响应和方差分解等技术工具,分析了出口增长、投资增长、政府支出增长与产出增长之间的动态效应及其区域差异。

本文的结论认为:首先,从总体上看,中国满足"出口拉动增长"假说,但不满足"增长推动出口"假说。分地区来看,对外开放程度较高的东部地区出口增长对产出增长的拉动作用要明显强于中西部地区,且东、中、西部均不满足"增长推动出口"假说。其次,中国出口增长对产出增长的拉动作用呈现出逐渐衰减的趋势。来自出口增长的正向冲击对当年产出增长的拉动效应最为明显,但效应随后逐渐衰减,在冲击发生约五年后基本消失。第三,固定资产投资对中国经济增长的拉动作用比较明显。最后,东部地区的政府财政支出增长对产出增长的拉动效果要强于中西部地区。

在当前中国经济进入新常态,经济增长模式正由传统的过度依赖出口和投资向消费与 科技驱动转变的历史背景下,本文的研究结论具有重要的政策含义。为更好地推动中国经 济实现快速、均衡和可持续发展,基于论文的一些结论,我们提出如下政策建议:

首先,继续实施出口鼓励政策,不同地区的出口鼓励政策应有所区别,实现错位发展。 考虑出口对于经济增长的重要性,中国应继续实施出口鼓励政策。鉴于东部地区的出口增 长对产出增长的拉动效应明显,其应继续扩大对外出口,并要加快推进产业结构转型升级, 不断提升出口产品的附加值。中西部地区应基于比较优势原则,积极承接来自东部地区的 产业转移,更好发挥其对本地区经济增长的拉动作用,要不断提高对外开放水平,努力缩 小同东部地区的发展差距,实现跨越式发展。

其次,投资依然是拉动中国经济增长的主要驱动力。在投资重点领域选择上,不同地 区应有所侧重。东部地区要增加技术升级和创新方面的投资,增强创新驱动力,而中西部 地区则要加大对于基础设施的投资力度,完善经济增长的基础性条件,提高经济自生能力。

最后,继续充分发挥政府在经济建设中的积极作用。政府支出对增长具有显著的拉动效应,中国政府在政策制定、产业布局、人才培训、基础设施投资与建设方面应继续发挥积极作用。对于财政收入不足、严重依赖于财政转移支付的西部地区,中央政府既应加大对其财政转移支付的力度,又要在铁路(高铁)、公路、机场等基础设施建设方面对其适当倾斜。

# 参考文献:

陈强(2010):《高级计量经济学及 Stata 应用(第二版)》,高等教育出版社。 高峰、范炳全、王金田(2005):《我国进出口贸易与经济增长的关系——基于误差 修正模型的实证分析》,《国际贸易问题》第7期。

雷欣、陈继勇(2012):《FDI、出口与区域经济增长——异质面板"格兰杰"因果检

验的应用》,《经济管理》第6期。

林毅夫、李永军(2003):《出口与中国的经济增长: 需求导向的分析》,《经济学(季刊)》第3期。

张兵兵(2013):《进出口贸易与经济增长的协动性关系研究——基于 1952-2011 年中国数据的经验分析》,《国际贸易问题》第 4 期。

Aghion P, Howitt P. "The Economics of Growth" MIT Press Books, 2009, 1, pp.

Awokuse T O, Christopoulos D K. "Nonlinear dynamics and the exports—output growth nexus" *Economic Modelling*, 2009, 26, pp. 184-190.

Awokuse T O. "Export-led growth and the Japanese economy: evidence from VAR and directed acyclic graphs" *Applied Economics*, 2006, 38, pp. 593-602.

Bahmani-Oskooee M, Alse J. "Export growth and economic growth: An application of cointegration and error-correction modeling" *The Journal of Developing Areas*, 1993, pp. 535-542.

Balassa B. "Exports, policy choices, and economic growth in developing countries after the 1973 oil shock" *Journal of Development Economics*, 1985, 18, pp. 23-35.

Chang T, Simo-Kengne B D, Gupta R. "The causal relationship between exports and economic growth in the nine provinces of South Africa: evidence from panel-Granger causality test" *International Journal of Economic Policy in Emerging Economies*, 2013, 6, pp. 296-310.

Choong C K, Yusop Z, Liew V K S. "Export-led growth hypothesis in Malaysia: An investigation using bounds test" *Sunway academic journal*, 2005, 2, pp. 13-22.

Dash R K. "Revisited Export-Led Growth Hypothesis" *South Asia Economic Journal*, 2009, 10, pp. 305-324.

Galimberti J K 2009. Conditioned Export-Led Growth Hypothesis: A Panel Threshold Regressions Approach [M]. University Library of Munich, Germany.

Hatemi-J A, Irandoust M. "Time-series evidence for Balassa's export-led growth hypothesis" *Journal of International Trade & Economic Development*, 2000, 9, pp. 355-365.

Hatemi-J A. "Export performance and economic growth nexus in Japan: a bootstrap approach" *Japan and the World Economy*, 2002, 14, pp. 25-33.

Henriques I, Sadorsky P. "Export-led growth or growth-driven exports? The Canadian case" *Canadian Journal of Economics*, 1996, pp. 540-555.

Hsiao M-c. "Tests of causality and exogeneity between exports and economic growth: the case of Asian NICs" *Journal of Economic Development*, 1987, 12, pp.

Jun S. "Bi-directional Relationships between Exports and Growth" *Journal of Economic Research*, 2007, 12, pp. 133-171.

Konya L. "Exports and growth: Granger causality analysis on OECD countries with a panel data approach" *Economic Modelling*, 2006, 23, pp. 978-992.

Ray S. "A causality analysis on the empirical nexus between export and economic growth: Evidence from India" *International Affairs and Global Strategy*, 2011, 1, pp. 24-38.

Reppas P A, Christopoulos D K. "The export-output growth nexus: Evidence from African and Asian countries" *Journal of Policy Modeling*, 2005, 27, pp. 929-940.

Shan J, Sun F. "Export-led growth hypothesis for Australia: an empirical re-investigation" *Applied Economics Letters*, 1998a, 5, pp. 423-428.

Shan J, Sun F. "On the export-led growth hypothesis: the econometric evidence from China" *Applied Economics*, 1998b, 30, pp. 1055-1065.

Thornton J. "Cointegration, causality and export-led growth in Mexico, 1895-1992"

Economics letters, 1996, 50, pp. 413-416.

Waithe K, Lorde T, Francis B. "Export-led Growth: A Case Study of Mexico" *International Journal of Business, Humanities and Technology*, 2011, 1, pp. 33-44.

Zeren F, Savrul B K. "Revisited Export-Led Growth Hypothesis For Selected European Countries: A Panel Hidden Cointegration Approach" *Istanbul University Econometrics and Statistics e-Journal*, 2013, 18, pp. 134-151.

IIS 简介: 国际投资研究系列 (International Investment Studies) 是中国社会科学院世界经济与政治研究所国际投资研究室的研究成果。该室的主要研究领域包括跨境直接投资、跨境间接投资、外汇储备投资、国家风险、国际收支平衡表与国际投资头寸表等。国际投资室的成员为张明、王永中、张金杰、李国学、潘圆圆、韩冰与王碧珺,定期参加国际投资室学术讨论和报告写作的成员还包括姚枝仲、高蓓、陈博、刘洁、黄瑞云与赵奇锋。我们的主要产品包括:中国跨境资本流动季度报告、中国对外投资季度报告、国家风险报告、工作论文与财经评论等。

责任条款:本报告非成熟稿件,仅供内部讨论。报告版权为中国社会科学院世界经济与政治研究所国际投资研究室所有。未经许可,不得以任何形式翻版、复制、上网和刊登。本报告仅代表研究人员的个人看法,并不代表作者所在单位的观点。